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Abstract

Monitoring distant structures using a high-speed camera frequently relies on modal param-
eters. Even with high-dynamic-range sensors (e.g., accelerometers) damping identification
is not trivial. With high-speed cameras the dynamic range is relatively small and contam-
inated with a relatively high level of noise. Image-based techniques have the advantage
of providing contact-less full-field structural identification. While the damping is a modal
parameter and theoretically not spatially dependent, this study looks at the potential to use
the spatial over-determination, provided by the high-speed camera to increase the accuracy
of the contact-less damping identification. High-speed cameras provide thousands of mea-
surement locations, and identify the damping with noise-resistant methods like those based
on the Continuous Wavelet Transform is numerically demanding. This research is built on
the the Morlet Wave Damping Identification method, which is based on the Continuous
Wavelet Transform, but is also significantly faster. Finally, the full-field damping parame-
ters were averaged with regard to the identified deflection shapes. The theory is extended
with an experiment, where damping is identified for a simple structure at frequencies up
to 2.5 kHz. It was found that the proposed method resulted in damping identification that
was comparably accurate to the damping identified from high-dynamic-range and low-noise
piezoelectric accelerometers. This research confirms that damping can be accurately identi-
fied from high-speed-camera measurements, only.
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1. Introduction

High-speed cameras are seeing increasing use in the field of structural dynamics [1, 2],
where they provide contact-less measurements of displacements with a high spatial resolu-
tion. Theoretically, each pixel can be a sensor enabling a full-field measurement [3, 4]. One
of the advantages is that high-speed camera measurements offer a full-field response from
a distant object [5]. Non-contact and distant monitoring make possible applications that
are not possible or hard to perform with conventional approaches, e.g., helicopter blades [6],
marine propellers inside cavitation tunnels [7, 8] and wind-turbine blades [9, 10]. Camera-
based approaches are also used to monitor concrete structures under seismic loads [11],
bridges [12], as well as on-line health monitoring [13]. One of the disadvantages of high-
speed camera measurements is the relatively high noise; typically on 8 bit grayscale image
sensor has approximately 3 bits of noise [14, 15]. This noise is even more pronounced when
reducing the field of view, which is the case with distant objects [16].

In recent years, image-based research has also focused on modal identification. Yang
et al. [17] proposed output-only procedures based on a blind source separation technique
utilising independent component analysis to isolate the vibrating modes and identify mode-
shapes from a full-field measurement. Damping is identified using a logarithmic decrement.
Yu and Pan [18] researched the use of a single camera for stereo digital image correla-
tion; they also applied a half-power bandwidth method to identify the first three damping
ratios on four discrete points of a thin aluminium plate. Huňady et al. [19] developed a
methodology based on singular-value decomposition to detect mode-shapes and to decouple
the physical model by generating weighted frequency-response functions for each mode; the
damping is identified using rational fraction polynomial and frequency-domain polynomial
methods. Ege et al. [20] conducted identification of the loss factor on a multi-layer thin
plate using laser Doppler vibrometer up to a high frequency range. Felipe-Sesé et al. [21]
used the circle-fitting method to identify the modal parameters. To obtain a single natural
frequency and damping ratio for each mode, the identified mode-shape amplitudes were used
for weighting. Yang et al. [22] proposed a data-driven method based on data clustering to
blindly identify the natural frequency and perform the mode separation. Silva et al. [23] per-
formed a pixel-wise mode decomposition using Nonnegative Matrix Factorization algorithms
to generate separate videos for each mode that are then used to identify a mode shapes and
natural frequencies using the blind source separation complexity pursuit algorithm; damp-
ing is estimated using conventional Fourier-transform and logarithmic decrement techniques.
Marchetti et al. [24] modeled structural damping of the multi-layer plate and used space do-
main approach for experimental verification of the structural loss factor in high-frequency
range.

The focus of this research is to overcome the relatively noisy measurements obtained
with high-speed cameras using the over-determination this full-field measurement provides.
At the same time, the damping-identification uncertainty is spatially dependent (higher
at the nodes). The damping identification will be based on the Morlet-Wave Damping
Identification (MWDI) method [25], which was previously shown to have the advantages
of the continuous wavelet transform method (CWT), e.g., identification on short signals,
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resistance to noise, good frequency separation, [26, 27]; however, MWDI is numerically
significantly less demanding [25, 28].

This manuscript is organized as follows. Sec. 2 gives the theoretical background required
in Sec. 3, where the Spatially Weighted Morlet-Wave Damping Identification method is
introduced. Experimental research is discussed in Sec. 4. Conclusions are given in Sec. 5.

2. Theoretical background

Here, the theoretical background and prior knowledge required in the subsequent sections
will be presented. In particular, the basics on the Morlet-Wave Damping Identification
(MWDI) [25] and the Extended MWDI [28] will be described.

2.1. Morlet-Wave damping identification method

The MWDI method is based on the Continuous Wavelet Transform (CWT) damping
identification [26, 27, 29]. If the modes are not close, the CWT is able to decompose
particular modes and the damping can be identified per particular mode [27]. If the CWT
is based on a two-dimensional, time-frequency grid, then the MWDI is based on a finite
integral, which is obtained for each mode at one time-frequency point, only. Fig. 1 shows the
damped response fm of a SDOF system that is described with the frequency of oscillation ω
(usually easy to identify), the amplitude of oscillation X and damping ratio δ of the viscous
damping parameter over critical damping. Similar to the CWT, the MWDI defines the
integral I:

I(n, k, ω) =

∫ T

0

fm(t)ψ∗(n, k, ω, t) dt, (1)

where T is the time length of the analyzed mode, which is, due to spectral-leakage reasons,
defined by the number of oscillations k (k ∈ N) at the analyzed frequency ω: T = 2π k/ω ; ∗

is the complex conjugate and ψ is a Morlet wavelet function [30] expressed with parameters
n, k, ω:

ψ(n, k, ω, t) = (2π)−
3
4

√
nω

k
exp

[
−
( n

4kπ

)2
(kπ − ωt)2 + i (kπ − ωt)

]
(2)

The unknown amplitude X can be reduced, by obtaining the integral I at two different
values of the time-spread parameter n:

M̃ (n1, n2, k, ω) =
|I(n1, k, ω)|
|I(n2, k, ω)| , (3)

where effect of n1 and n2 parameters on the wavelet-function envelope is shown in Fig. 1.
An influence of parameters: n1, n2 and k on damping identification is discussed in Subsec-
tion 2.1.1.

The ratio M̃ can be obtained from a measurement, but for a SDOF-free response, it
can also be defined analytically. If the Eq. (1) is inserted into Eq. (3) and the SDOF-free
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Figure 1: Shape and position of the WFs on a simple example of a decaying signal (for details see Appendix
A). WF parameters are: n1 : n2 = 5 : 10, k = 20, f = 90 Hz.

response is expressed as fm(t) = X exp (−δωt) cos (ωt− ϕ), the ratio is expressed as:

M (n1, n2, k, δ) =

∣∣∫ ��X exp (−δωt) cos (ωt− ϕ)ψ∗(n1, k, ω, t) dt
∣∣∣∣∫ ��X exp (−δωt) cos (ωt− ϕ)ψ∗(n2, k, ω, t) dt
∣∣ , (4)

it can be seen that constant X is reduced, which is also, the key feature of the MDWI
method. The further procedure leads to the analytical expression as [25]:

M (n1, n2, ki, δi) = exp

(
4π2k2i δ

2
i

n2
2 − n2

1

n2
1n

2
2

)√
n2

n1

G (n1, n2, ki, δi) (5)

where δi is the damping ratio of the i-th mode and G is based on the error functions, see [25].
Damping is identified by solving the equation:

M̃ (n1, n2, ki, ωi)−M (n1, n2, ki, δi) = 0 (6)

for the unknown δi.
For n1 ≥ 10 and n1 < n2 Eq. (5) simplifies to G ≈ 1; in this case the closed-form solution

can be obtained. If the simplification on G cannot be made, then the damping is identified
by numerically solving Eq. (6). For details, see [25].

2.1.1. MWDI parameter selection and the Extended MWDI method

The time-spread parameter n defines the sensitivity of the MWDI method: the smaller
the n1, the more sensitive is the damping identification, Eq. (5). However, with a smaller n
the uncertainty of the identification increases [25]. From previous research, the parameter
n1 is typically selected as 5 (high sensitivity), 7 (medium sensitivity) or 10 (low sensitivity)
and the ratio of n1 : n2 = 1 : 2 is used [25].

The minimal value of k is defined by the admissibility condition for the wavelet func-
tion [25, 31]. On the other hand, the maximum k is not clear: a large number of oscillations
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would, in general, increase the accuracy; however, as the free response is damped and the
level of noise can be considered constant, the signal-to-noise ratio (SNR) decreases with
higher k. Further, with high k the frequency spread of the identification also becomes very
narrow which increases the uncertainty of the identification if the frequency of the oscillation
varies slightly.

The third parameter ω is a frequency of the wavelet function which is set on the nat-
ural frequency of the systems. This parameter can be numerically tuned to search for the
maximum absolute value of the wavelet coefficient I, Eq. (1). This way an exact natural
frequency is identified.

An example of the MWDI method is shown in Fig. 2 (δ = 1 %, for other parameters,
see Appendix A). It is clear that the selection of the parameters (n1, n2 and k) significantly
influences the convergence of the identification; high values of n also result in a system-
atic error [25]. The extended MWDI method presents an optimisation approach to the
parameters’ selection to achieve a convergent result. The method is originally established
for identification of damping from a single measurement point in the whole range of feasible
parameters k and n2. The parameter n1 is set constant, n2 = {n2 ∈ N : n1 < n2 ≤ 2n1} and
k is set in range too. The optimisation procedure is consisted of searching for k value that
has minimal variation of identified damping for different n2 values. For details, see Tomac et
al. [28]. In this research eMWDI is established between different spatial points for a single
n1, n2 set, details are in the following section.

5 10 15 20 25 30 35 40 k
0.85

0.90

0.95

1.00

1.05

δ
(%

)

n1 : n2 = 5 : 10

n1 : n2 = 7 : 14

n1 : n2 = 10 : 20

Figure 2: Identified damping vs the parameter k.

3. Spatially weighted Morlet-Wave Damping Identification

MWDI is resistant to noise; however, the noise in camera data is orders of magnitude
higher than that in classical piezoelectric accelerometers: a typical 8 bit (grayscale) high-
speed camera has 3 bits of noise [15]; in case the of a better, 12 bit, camera the noise is
typically 5 bits [32, 33]. Due to the high level of noise, the damping identification with
high-speed cameras is especially difficult [4, 21].
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This research introduces the MWDI-based method where the spatial over-determination
of the damping is used to reduce the uncertainty of the identification. Further, for a par-
ticular mode, the SNR is smaller close to the nodes and therefore a spatial weighting is
introduced. The proposed spatially weighted MWDI method follows these steps:

1) Identify displacements from image data (optical flow or DiC)

2) Obtain the spatial power spectral density (PSD)

3) Roughly estimate natural frequencies from PSD

4) Identify the exact natural frequencies and search for optimal k parameter using extended
MWDI at regions with the highest spectral energy

5) Apply MWDI at all spatial locations

6) Apply spatial weighting

In step 1, the identification of the displacement fm,j(t) at the location j in the time
domain is followed by step 2 where the power spectral density (PSD) Pj(ω) [34] is obtained:

Pj(ω) =
1

T
f̂ ∗
m,j(ω) f̂m,j(ω), (7)

where f̂m,j(ω) is the Fourier transform and ∗ is the complex conjugate. In step 3, from the
spatial PSD Pj(ω) a rough estimation of the natural frequencies ωi is made; i is the mode
index.

In step 4, the rough natural frequencies are used at locations with high PSD values (e.g.
the top 1%) to perform the extended MWDI, where the search for parameter k ∈ N and
klo ≤ k ≤ khi. For each k the exact natural frequency ωn,i is identified using:

∂ |I (n, ki, ω )|
∂ω

= 0, (8)

where I is defined with Eq. (1) and i is the mode number. The maximum defined with
the Eq. (8) is sought using a simple maximum search numerical procedures within a narrow
frequency region set around estimated natural frequency, for the n1 parameter only. The ki
parameter corresponding to a particular mode i is selected by searching for the minimum
standard deviation of the damping δi,l(k) between selected spatial locations l:

ki = arg min
k

{
std dev

l
{δi,l (k)}

}
(9)

In step 5, using ki and ωn,i, the MWDI is continued for the full-field damping identi-
fication δi =

[
δi1 δi2 · · · δij

]
at all measurement locations j (typically, the number of

full-field measurement locations is from several hundreds to several thousands).
In step 6, the full-field damping ratios are spatially weighted to obtain the modal damping

ratio δi. Because the identification near nodal points will be prone to uncertainty due to a low
SNR, the weight of these locations has to be reduced. In contrast, damping ratios identified
near anti-nodes must have an increased weight. The PSD is a good choice for weighting
not only it is easy to obtain, but also because it is related to the square of the identified
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deflection shape. The square is selected because the deflection shape is proportional to the
mechanical energy (damping energy and noise are expected to be related to a fraction of
the mechanical energy) and the square always results in a positive weight. The normalized
full-field PSD P̃i for the i-th mode is defined as:

P̃i =
[
· · · Pj−1 (ωi) Pj (ωi) Pj+1 (ωi) · · ·

]/∑
j

Pj (ωi) (10)

Finally, the spatially weighted modal damping is obtained:

δi = P̃i · δT
i (11)

4. Experimental research

The spatially weighted MWDI method is here applied to measurements of a freely sup-
ported aluminium beam, see Figs. 3 and 4. The beam (l = 600 mm, b = 50 mm, h = 12 mm)
was excited with an modal hammer (PCB 086C03) at location lE = 400 mm. The response
was measured with an accelerometer (DYTRAN 3097A2T) at the location lR = 500 mm.
Both locations (lE and lR) are chosen carefully by taking care to avoid nodes for the first five
natural frequencies. The full-field displacement response was measured using a high-speed
camera (FASTCAM SA-Z type 2100K-M-64GB, 12 bit greyscale sensor).

A data-acquisition (DAQ) card NI-9234 was used to simultaneously acquire (sampling
frequency fs = 51.2 kHz) signals from the modal hammer, the accelerometer and the voltage
trigger. For the voltage trigger, the modal hammer was equipped with an electric wire
that, when in contact with the beam, closes the electric circuit and triggers the high-speed
camera and the NI-DAQ simultaneously, acting as a software trigger. After the hit, the video
is recorded to the high-speed camera’s internal memory, signals from modal hammer and
accelerometer are recorded on the hard drive including pre-triggered samples. An overview
of the measurement chain is shown in Fig. 5. Fig. 6 shows an example of the excitation force
and Fig. 7 shows the Frequency Response Function between the response accelerometer and
the impact force.

l

lR

lE

h

b

x
y

Figure 3: Schematic overview of the beam, not to scale.
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Figure 5: Measurement chain.

4.1. Damping identification from high-speed video data

The displacement from the high-speed video recording (2 s at 50 000 FPS) is detected
using the Lucas-Kanade method [35] as implemented in the open-source package pyIDI [36].
The displacement was identified at 194×3 = 582 locations, based on 12×12 px subsets at a
distance of ∆x = ∆y = 5 px, see Fig. 8. Fig. 9 shows the response displacement (in pixels)
identified from the high-speed camera at a single location (top-left point of the beam, see
Fig. 8). To clearly show how each mode spreads in the time domain, the continuous wavelet
transform is applied to the response using the Gabor wavelet function. The scalogram of
the response is shown in Fig. 10. For practical reasons, the CWT is obtained around each
mode (±50 Hz) using different wavelet function parameters and the amplitudes around each
mode are normalized to 1.
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Figure 6: Excitation force.

In Fig. 11 the normalized full-field PSD P̃i (10) is shown for the 1st (i = 1) and the 5th

(i = 5) modes. The spectral separation of PSD is established by using a narrow rectangular
window around each natural frequency. From P̃i the locations within the top 1 % values
are used for the identification of ki parameters, as described in step 4, see Sec. 3. In Fig. 10
the dashed line marks the limit between the top 1 % values and the rest. Estimated natural
frequencies (Tab. 1) are used as the starting frequencies for the extended MWDI method
(ωi = 2πf̃n,i). Additionally, the parameters n1 = 5 and n2 = 10 are used. The results of the
identification in step 4: the ki parameters and the exactly identified natural frequencies fn,i
are shown in Tab. 1.

Table 1: Identification results from the best 1% points using the eMWDI method with parameters n1 = 5,
n2 = 10

Natural frequency: 1st 2nd 3rd 4th 5th

estimated: f̃n (Hz) 179 482 944 1551 2306
identified: fn (Hz) 179.21 482.22 941.15 1549.1 2304.7

Parameter: k 95 458 570 342 554

Full-field identification using the MWDI method as described in step 5 is based on
the parameters identified in step 4: ki, fn,i, n1, n2. The results of the full-field damping
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Figure 7: FRF obtained from the response accelerometer and force impulse.

Figure 8: A single frame from the high-speed camera view, showing speckle type and displacement identifi-
cation points with dots (colours correspond to: blue – top, orange – middle and green – bottom row).

identification δi for all the identified modes are shown in Figs. 12 and 13. Additionally, the
normalized full-field PSD P̃i (10) is shown next to the identified damping ratio in Figs. 12
and 13, which confirms that the damping uncertainty is high when the response amplitudes
are small and giving arguments for the spatially weighted damping as defined in Eq. (11).
The spatially weighted damping ratios are given in Tab. 2.

Table 2: Results of the spatially weighted full-field damping identification.

Natural frequency: 1st 2nd 3rd 4th 5th

δ (%) 0.7508 0.0633 0.0358 0.1041 0.1482
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Figure 9: High-speed camera based displacement at a single location.

4.2. Damping identification based on a high dynamic range sensor

In this section the reference damping ratios were obtained from the accelerometer (high-
dynamic range), only. In the preliminary research, not reported here, it was found that due
to the high-dynamic range of the accelerometer, using more accelerometers and/or different
locations, would not have a significant effect on the damping identification. The FRF can
be seen in Fig. 7. The identification relies on the MWDI method (step 5) using the same
input values as identified in step 4 for the full-field identification of damping (see Tab. 1).
The results are shown in Tab. 3. A comparison with the results from Tab. 2, expressed as
a relative error calculated with errori = (δi − δacc,i)/δacc,i · 100 %, is also added to Tab. 3.

Table 3: Identification results based on accelerometer data.

Natural frequency: 1st 2nd 3rd 4th 5th

δacc (%) 0.7443 0.0633 0.0364 0.1054 0.1567
error (%) 0.87 -0.06 -1.64 -1.21 -5.43

By looking at the error values in Tab. 3 it is clear that the longest error of 5.4 % is as
expected at the natural frequency of 2.3 kHz, because the displacement responses of higher
modes are typically low and the response from camera is very noisy. This leaves relatively
low amount of usefull information to identify damping. The character of the signal can
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Figure 10: Scalogram of a single location of the high-speed camera based displacement.

be seen in the scalogram in Fig. 10. Therefore, a method that acts like a microscope for
signal is required and MWDI is such method. It is important to say that eMWDI method
managed to identify adequate k parameter to supply in MWDI method that prefromed
well. The errors of the remaining modes are below 2 %. It is clear that the second mode,
which was well excited, was accurately identified. The time to perform the identification is
mostly determined by step 4, which is the most demanding from the calculation perspective,
was ≈ 8 min on the processor Intel(R) Core(TM) i3-2350M without executing for loops in
parallel. To perform the full-field identification in step 5 on the same CPU required 30 s.
The remaining steps executed quickly, in just few seconds.

5. Conclusion

Accurate damping identification is challenging even with high-dynamic-range sensors
such as piezoelectric accelerometer. A high-speed camera provides relatively low-dynamic-
range measurements, which are also contaminated with measurement noise (typically, 3 out
of 8 bits are contaminated with noise). This research focuses on the identification of the
damping from measuring camera-based displacements only.

While the camera-based identified displacements are of relatively low quality, the full-
field measurement presents an over-determined data set for the spatially invariant damping
parameter identification. This research proposed a method for spatially weighted damping
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Figure 11: Spatial distribution of the energy spectra for (a) the 1st and (b) the 5th mode.

identification, which takes into account the spatially dependent uncertainty of the damping
identification. The method is based on the Morlet Wave Damping Identification (MWDI)
method, which has the advantage of being resistant to noise, successful in damping identifi-
cation at close modes and also numerically fast. The advantages of the MWDI method are
especially important for the damping identification and the large number of measurement
locations (i.e., in full-field, high-speed-camera-based identification). Tuning the MWDI
method’s parameters is required, which is established using the extended MDWI method on
a fraction of the measurement locations. Finally, to obtain a single damping ratio per each
mode, the damping is weight averaged based on the PSD of the full-field response of each
mode.

The research involved an aluminium beam that was excited with a single hit from a
modal hammer and the response was recorded simultaneously with a high-speed camera
and a piezoelectric accelerometer, which was used for a comparison of the identified results.
Damping was identified for the natural frequencies up to 2.5 kHz: with the proposed method
for the high-speed-camera measurements and with the MWDI method for the piezoelectric
accelerometer measurement. A comparison of the results with the accelerometer confirmed
similar results: four damping ratios were identified within approximately 1 % when com-
pared to the accelerometer results; the damping ratio at 2304.7 Hz was identified within
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approximately 5 % when compared to the accelerometer result.
This research confirmed that the full-field high-speed-camera-based damping identifica-

tion approach can result in a similar accuracy of damping identification to an identification
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Figure 12: Damping identified at all spatial points using MW method: a) Mode 1, b) Mode 2, c) Mode 3.
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Figure 13: Damping identified at all spatial points using MW method: a) Mode 4, b) Mode 5.

based on high-dynamic-range sensors. With this, the highly accurate, non-contact identifi-
cation of damping based on camera measurements is confirmed, opening up new possibilities
in structural health monitoring and failure analysis.
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Appendix A. Definition of a SDOF example

Parameters that describe a SDOF system used as the example in the text are:

� system: m = 1 kg, k = 320 kN m−1, c = 11.31 N s m−1
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� initial condition: v0 = 1 m s−1

� modal parameters: fn = 90 Hz, δ = 1 %

� signal: fs = 8000 S s−1, T = 0.5 s
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